Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0267576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476813

RESUMO

BACKGROUND: Retinopathy of prematurity (ROP) remains the leading cause for blindness in children. Limited hyperoxia induced proliferative retinopathy (L-HIPR) was recently introduced as a potential animal model for ROP and persistent fetal vasculature; however, the detailed pathological changes remain unclear. METHODS: To model L-HIPR, we placed C57BL/6J mice in 65% oxygen from birth to post-natal day 7 (P7). We examined eyes at intervals between P12 and P30. Retinal morphometry, thickness, and preretinal fibrosis were quantified at different time points on histological sections stained with hematoxylin and eosin (H&E) and Masson Trichrome, respectively. Vascular development, angiogenesis, inflammation, and pericyte coverage were analyzed using immunohistochemistry staining in retinal flat mounts and cross sections. RESULTS: In L-HIPR, the hyaloidal vessels persisted until the latest time point in this study, P30 and began to invaginate the peripheral then central retina starting at P12. Central retinal distortion was noted beginning at P17, while the peripheral retina demonstrated a trend of thinning from P12 to P30. We found that L-HIPR was associated with delayed and abnormal retinal vascular development with subsequent retinal inflammation, pericyte loss and preretinal fibrosis. CONCLUSION: Our study presents a detailed analysis of the L-HIPR animal model demonstrating vitreoretinal pathologic changes, preretinal fibrosis and persistent hyaloidal vessels into adulthood. Based on our findings, we suggest that the persistence and peculiar stepwise migration of the hyaloidal vessels into the retina may provide a potential rescue mechanism for inner retinal development that deserves further study.


Assuntos
Membrana Epirretiniana , Hiperóxia , Neovascularização Retiniana , Retinopatia da Prematuridade , Vitreorretinopatia Proliferativa , Adulto , Animais , Modelos Animais de Doenças , Membrana Epirretiniana/patologia , Fibrose , Humanos , Hiperóxia/complicações , Hiperóxia/patologia , Recém-Nascido , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Retina/patologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Retinopatia da Prematuridade/etiologia , Retinopatia da Prematuridade/patologia , Vitreorretinopatia Proliferativa/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-33362946

RESUMO

Background: Non-invasive peripheral nerve stimulation, also referred to as transcutaneous afferent patterned stimulation (TAPS), reduces hand tremor in essential tremor (ET) subjects. However, the mechanism of action of TAPS is unknown. Here, we investigated changes in brain metabolism over three months of TAPS use in ET subjects. Methods: This was an interventional, open label, single group study enrolling 5 ET subjects. They received 40 minutes of TAPS treatment twice daily for 90 days. Brain metabolic activity and tremor severity were measured using 18F-fluorodeoxyglucose (FDG) PET/CT, and the Tremor Research Group Essential Tremor Rating Assessment Scale (TETRAS), respectively, at baseline and after 90 days. Tremor power and frequency was measured before and after all TAPS sessions using an onboard three-axis accelerometer. Results: FDG PET/CT revealed areas of hypermetabolism in ipsilateral cerebellar hemisphere and hypometabolism in contralateral cerebellar hemisphere following 90 days of TAPS treatment, compared to day one (uncorrected p value <0.05). Paired pre-post kinematic measurements over 90 days showed significantly decreased tremor power (p < 0.0001) but no change in tremor frequency. The TETRAS score on day 1 decreased from 6.5 ± 2.5 to 4.1 ± 1.8 following TAPS (p = 0.05). The pre-post TETRAS scores on day 90: 4.9 ± 1.5 and 4.1± 1 were lower than pre-TAPS TETRAS score on day 1 (p = 0.14 and 0.05, respectively). Conclusions: Our results suggest that longitudinal TAPS of the median and radial nerves modulates brain metabolism in areas instrumental to motor coordination and implicated in ET. Clinically, TAPS reduced tremor power, but had no effect on tremor frequency. This study paves the way for comprehensive studies in larger cohorts to further elucidate the mechanism of TAPS. Highlights: Non-invasive peripheral nerve stimulation, also referred to as transcutaneous afferent patterned stimulation (TAPS), reduces hand tremor in essential tremor subjects. Longitudinal TAPS therapy alters cerebellar metabolism, which can be a cause or consequence of tremor reduction. Cerebellar-premotor region connectivity may play a role in the anti-tremor effects of TAPS.


Assuntos
Cerebelo/diagnóstico por imagem , Terapia por Estimulação Elétrica/métodos , Tremor Essencial/terapia , Nervo Mediano , Nervo Radial , Vias Aferentes , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cerebelo/metabolismo , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/metabolismo , Feminino , Fluordesoxiglucose F18 , Mãos , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...